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ABSTRACT

Audio classification, which serves as a fundamental step for
acoustic signal processing, has attacked a lot of research in-
terest and numerous audio classification neural networks have
been proposed. In these networks, down-sampling blocks
which compresses audio features are essential due to the com-
putational capacity. However, compressing the signal will in-
evitably cause the loss of relevant information. To mitigate
this issue, large amount of parameters are used. In this paper,
we present a novel down-sampling method called gated multi
mini-patch extractor (GMME), in which multiple convolutive
layers are used to extract relevant information at different lev-
els, including time frames, pseudo-frequency bins, and global
features. And gate mechanism is adopted to retain the corre-
lation with the original features. Several simulations demon-
strate that, compared to the baseline, our method can achieve
comparable or slightly better performance with significant re-
duction of number of parameters.

Index Terms— Audio classification, feature extraction,
down-sampling blocks, gated multi mini-patch extractor

1. INTRODUCTION

Audio events, to name a few, animal sounds, speech and
music, are fundamental parts of our daily lives. As there are
various types of audio events, audio classification should
be carried out before other tasks, such as enhancement,
separation, label indexing, and segmentation. Traditional
methods use Gaussian mixture model (GMM) [1] or hid-
den Markov model (HMM) [2, 3] as classifiers, in which
time-frequency representations, e.g., short-time fourier trans-
formation (STFT) spectrogram and Mel spectrogram are used
as input features. Limited by computational capacity and va-
riety of datasets, the accuracy of these methods is far from
satisfying.

With the booming of deep neural networks (DNNs),
numerous audio event classification networks have been
proposed. These models, especially those based on the
convolutional neural network (CNN) [4, 5], recurrent neu-
ral network (RNN) [6], and transformer architectures [7],
have achieved remarkable superiority over the aforemen-
tioned machine learning (ML) methods. Inspired by the great
achievement of computer vision (CV) field, a popular kind
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Fig. 1: Structure of EAT and replace for GMME

of audio classification methods which regard spectrogram of
audio signal as an image are proposed [8]. In these methods,
various DNNs are implemented to extract features from these
spectrograms. And then fully connected layer is carried out
for final judgment. It is claimed that the Mel spectrogram
is the most suitable time-frequency representation [9, 10] for
such networks. The main problem of such methods is using a
fixed time-frequency representation which might not be able
to extract time-frequency structures of different kinds of au-
dio. Besides, these methods have to deal with the raw audio
with lots of data augmentation.

To addreass this problems, some end-to-end systems
have been proposed [11–13]. These systems generally con-
sists of three major parts. Firstly, a CNN-based encoder is
implemented to extract time-domain features. This transfor-
mation can significantly improve feature extraction accuracy
with some specific techniques [14]. The second part entails
down-sampling which aims at shortening the duration of time
frames and consequently, reducing the dimension of features
from the first stage. Finally, entirely connected layers are
carried out for classification. Although end-to-end methods
are theoretically more flexible and able to achieve better per-
formance, there were still some problems like a large number
of parameters or insufficient generalization. To deal with
these problems, the end-to-end audio transformer (EAT) [15]
which employed extra data augmentation and a well-designed



Fig. 2: Detailed structure of Gated Multi Mini-patch Extractor (GMME).

structure has been proposed and become the best-performing
model in this field.

For both aforementioned two approaches, a sufficient
time domain pooling is essential due to following two rea-
sons. On the one hand, an insufficient pooling will lead to
biased statistical estimates due to the natural non-stationarity
of audio signals, on the other hand, it cannot capture the
periodic features of audio signals, and consequently lose
some key information. To mitigate these concerns, we pre-
sented a simplistic method named gated multi mini-patch
extractor (GMME) for down-sampling time frames that al-
lows for the interdependence of both temporal and frequency
domain data with much fewer parameters compared to the
state-of-the-art (SOTA) technique. EAT was considered as
the backbone network architecture for our study, wherein we
trained and assessed our proposed approach using the ESC-
50 [16], Speech Command [17] and UrbanSound8K [18]
datasets as benchmarks. The mentioned datasets were used
to evaluate the efficacy of our proposed method. Simulations
validate that the proposed method successfully retains classi-
fication features while decreasing over 98% of the parameters
compared to the original anti-alias down-sampling block.

2. RELATED WORKS

2.1. Transformer

Transformer [7] model has exhibited exceptional proficiency
in natural language processing (NLP) [7] and CV [19]. The
primary application of this technique involves extracting and
converting relevant features with the manipulation of sequen-
tial data through a series of multi-head self-attention mech-
anisms. Owing to its ability to extract long-term attention,
transformer has also been implemented in audio classifica-
tion. The audio spectrogram transformer (AST) [20] is a pure-
transformer model based on the vision transformer (ViT) [19]
architecture and achieved remarkable performance. Some

Fig. 3: Result in ESC-50 dataset 5-folds

similar networks such as M2M-AST [21], HTS-AT [22],
Beats [23] were also proposed.

Although transformer-based models have achieved promis-
ing performance, they still face the limitation of disregarding
local priori knowledge. Consequently, these models fre-
quently possess substantial parameters and necessitate pro-
longed training periods. Furthermore, real-world tasks are
constrained by training datasets without the same data distri-
bution, requiring models to be more robust. In order to solve
these problems, researchers have leveraged the flexibility and
efficacy of CNN and integrated them with transformer [6],
and the SOTA work is EAT [15]. Owing to its implementa-
tion of efficient data augmentation techniques, the EAT model
exhibits superior performance even when data is scarce.



Table 1: Result in ESC-50 and UrbanSound8K, K and C is respective Kernel size and Channel number. #D-Param is the
parameter number of Downsample block, while #T-Param is represent Total model’s parameter.

Model Set #D-Param(D)[K] #T-Param(T)[M] Accurancy(%)
EAT-S

(conventional)
1961.1 5.18 ESC-50 Urban8k

91.25 84.11

EAT-GMME
(proposed)

K = 32, C = 8 17.4 3.23 90.80 83.64
K = 32, C = 16 34.9 3.25 91.10 83.64
K = 64, C = 16 67.8 3.28 91.30 83.59

2.2. Anti-alias Downsampling

EAT adopts anti-aliasing (AA) down-sampling [24] which is
regarded as an improvement of maxpool. It applies a low-
pass filter with a blur kernel after the max operation to mit-
igate aliasing caused by the pooling. When the temporal re-
ceptive field is small, this operation reduces aliasing and en-
hances translational invariance. However, with the gradual
increment of the frequency domain resolution, the parameter
size of the 1-d convolution grows and the temporal receptive
field expands. The blur kernel might ignore the spectral cor-
relation and alter the distribution of its features, leading to
performance degradation.

3. PROPOSED METHOD

In this paper we presented the gated multi mini-patch extrac-
tor to improve the preservation of pseudo-frequency and tem-
poral features during the down-sampling process. We replace
the anti-alias down-sampling block in EAT with our GMME
and the structure of proposed network is illustrated in Fig. 1.
GMME takes a tensor X = [x1,x2, . . . ,xB] ∈ Rf×t as in-
put and the corresponding output is Y = [y1,y2, . . . ,yB] ∈
R2f× t

s , where B is the batch size and s is the stride and we set
it to 2. Along the time frames, Y undergoes down-sampling,
while along the pseudo-frequency bins, it represents expan-
sion. In audio convolution operations, it is often beneficial to
improve the pseudo-frequency domain resolution for feature
learning [25]. The detailed structure of GMME is depecited
in the Fig. 2.

The main workflow of GMME can be divided into four
setps. Firstly, temporal and pseudo-spectral relationships are
encoded by local audio characteristics. In order to focus
on neighboring information, we split xi into temporal, fre-
quency, and global branches, using rectangular convolution
kernels for CNN’s locality and anti-aliasing [25, 26]. Specif-
ically, given the input xi ∈ Rf×t, we use kernels with three
spatial ranges: [k, 2s], [2s, k], and [2s, 2s], where k denotes
the kernel size and s represents the stride, i.e., the rate of
the time down-sampling. At the same time the channel was
expanded to C. Mathematically, this process can be denoted

as

Zf = PRelu [Ff (xi)] ,

Zt = PRelu(Ft(xi)),

Zg = PRelu(Fg(xi)), (1)

where Ff ,Ft,Fg represent the convolutional operations in
the frequency, temporal, and global branches, respectively.
PRelu is the parametric rectified linear unit (PRelu) [27]. By
applying these kernels, we obtain different attention features
Zf ,Zt ∈ RC× f

s ×
t
s , and Zg ∈ RC

2 × f
s ×

t
s .

Secondly, to extract the correlation between different
channels, we borrow the gate mechanism from gated recur-
rent unit (GRU) [28]. We divided the input channels into
two parts, one half of the channels is defined as gated maps,
referred to as Gt and Gf . The other half is treated as feature
maps, denoted as Mt and Mf . This process can be expressed
as (2).

Gt = Zt[:, :
1

2
× C, :, :] Mt = Zt[:,

1

2
× C :, :, :]

Gf = Zf [:, :
1

2
× C, :, :] Mf = Zf [:,

1

2
× C :, :, :]

(2)

Thirdly, gating is carried out to extract time and fre-
quency interactive information and create the global feature
map. The sigmoid function σ is used to convert Gt and Gf

into weight maps over different domains. As strong proba-
bility distributions over different domains will emphasize the
global weights and weak probability distributions will lead
to underplay global weights, we utilize Hadamard product ⊙
in both weight maps to get the global gated weights G, that
the different domains will interact with each other to get the
weights, acting as a mask for removing as much redundant or
distracting information as possible and keeping the effective
information. Similarly, Gt and Gf were also element-wise
product to get the global feature M

G = σ(Gt)⊙ σ(Gf ) (3)

M = PRelu(Mt ⊙Mf ) (4)

Eventually, Hadamard product of the gated weight G and
the feature map M is considered to provides an global en-
hancement and feature fusion. To preserve output in the orig-
inal representation, we employe a square kernel for global
information learning as Zg . Then element-wise sum with



Table 2: Result in Speech Commands V2. K and C is respective Kernel size and Channel number. #D-Param is the parameter
number of Downsample block, while #T-Param is represent Total model’s parameter.

Model Set #D-Param(K) #T-Param(M) Accurancy(%)
EAT-S-AA

(conventional)
493.1 1.97 97.76

EAT-S-GMME
(proposed)

K = 32, C = 8 17.4 1.50 97.74
K = 32, C = 16 34.9 1.51 97.71
K = 64, C = 16 67.8 1.54 97.88

the weighted feature map, which works as shortcut is imple-
mented. The output feature is then generated as

O = reshape(ϕc(Z
g + (G⊙M))), (5)

where ϕc refers to point-wise convolution kernel. It is used
for channel adjustment and structure fitting. Besides, it also
promotes fusion between the pseudo-frequency domain and
the time domain. Finally, reshape is implemented to adjust
the feature dimensions for the rest modules.

4. EXPERIMENT

4.1. Dataset

• ESC-50 dataset [16]: it consists of 2000 5-seconds
long audio signals of 50 different environmental audio
events, and the sampling rate of 44.1 kHz. We resam-
pled them to 22.05 kHz, and trained 3500 epochs.

• Speech Commands V2 [17]: each audio sample in the
dataset has a fixed duration of 1-second and a sampling
frequency of 16 kHz. The dataset includes 35 classifi-
cation tasks, each representing a specific word or com-
mand to be recognized. We trained 300 epochs.

• UrbanSound8K [18]: this dataset comprises 8732 au-
dio recordings, each belonging to one of 10 predefined
classes, representing various common urban sounds.
We resampled them to 22.05 kHz, zero-padding the
short samples to 4-seconds and trained 1500 epochs.

4.2. Training Configuration

We adopted EAT-S model structure and replaced the original
anti-alias down-sampling with our GMME module. We com-
pared the performance and complexity of our network with
original ETAs with above three datasets. We also investigate
the performance with convolutional kernel sizes and channel
widths.

All hyperparameters remain consistent with the open-
source code1 of the original paper. The parameters are opti-
mized using the AdamW optimizer [29]. We use the Onecy-
cle scheduler [30] with a maximum learning rate of 3e−4 and
epsilon of 1e−8, and employ the exponential moving aver-
age (EMA) [31, 32] method with a decay rate of 0.995. The

1https://github.com/Alibaba-MIIL/AudioClassfication

batchsize B is set to be 128. The loss is label-smoothing with
a noise parameter set to be 0.1 for single-label classification
tasks and binary cross-entropy. We perform data augmen-
tation according to the methods described in the original
paper, all experiments are conducted from scratch without
pretraining.

4.3. Result

Tabel 1 presents the results of ESC-50 and UrbanSound8K
datasets. For ESC-50, we can observe that the proposed
method demonstrates significant advantages. Compared to
the original network, it can maximally compresses the pa-
rameter size by approximately 98% (from 1969 K to 34.9 K)
and achieve slight better performance (91.25 % vs 91.30 %)
with 67.8 K model size. The overall model structure param-
eter size is also compressed by nearly 40% (from 5.18 M to
3.25 M). The results of Speech Commands V2 presented in
Tab. 2 again validate the improvement. In UrbanSound8k,
due to the existence of large amount of silent pieces, per-
formance of all algorithms degraded as silent pieces do not
contain any information, which also indicate it is important
to implement audio activity detection before classification.
On this dataset, our methods can still achieve comparable
performance with EAT-S. We also experimented different
settings of GMME, the results manifest that both kernel size
K and the number of channels C affect the accuracy. It is
clear that bigger kernel size achieves better performance. One
possible reason is that bigger kernels can capture more local
features. About channel numbers, there is a similar tendency
in channel numbers, it may due to the enhancement of the
anti-aliasing capability by convolutional layer [25].

5. CONCLUSION

Inspired by GRU, we proposed a down-sampling module for
feature extraction, termed as gated multi mini-patch extrac-
tor, which integrates the advantages of attention and pooling.
GMME extracts time-domain and the frequency-domain in-
formation through a mini-path extraction. Then the interrela-
tionship of the time-domain and the frequency-domain infor-
mation is modeled with the gate mechanism and a square ker-
nel is carried out to extract global feature. Compared to con-
ventional anti-aliasing blocks, GMME significantly reduces
the model size. Experiments indicate that GMME could serve
as a viable substitute for the process of audio classification.
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